2-hydroxy-1, 4-naphtoquinone - ترجمة إلى الروسية
Diclib.com
قاموس ChatGPT
أدخل كلمة أو عبارة بأي لغة 👆
اللغة:

ترجمة وتحليل الكلمات عن طريق الذكاء الاصطناعي ChatGPT

في هذه الصفحة يمكنك الحصول على تحليل مفصل لكلمة أو عبارة باستخدام أفضل تقنيات الذكاء الاصطناعي المتوفرة اليوم:

  • كيف يتم استخدام الكلمة في اللغة
  • تردد الكلمة
  • ما إذا كانت الكلمة تستخدم في كثير من الأحيان في اللغة المنطوقة أو المكتوبة
  • خيارات الترجمة إلى الروسية أو الإسبانية، على التوالي
  • أمثلة على استخدام الكلمة (عدة عبارات مع الترجمة)
  • أصل الكلمة

2-hydroxy-1, 4-naphtoquinone - ترجمة إلى الروسية

РАСХОДЯЩИЙСЯ ЧИСЛОВОЙ РЯД
1 + 2 + 3 + 4 + …; 1 + 2 + 3 + 4 +; 1 + 2 + 3 + 4 + ⋯; Натуральный числовой ряд; Сумма всех натуральных чисел
  • Первые шесть треугольных чисел
  • Рамануджана]], описывающей конечное значение ряда
  • Первые четыре частичные суммы натурального ряда. Изображённая парабола является сглаживающей асимптотой данных сумм и пересекает ось ординат на отметке −1/12
  • ''ζ''(−1) {{=}} −1/12}}

2-hydroxy-1, 4-naphtoquinone      
f
лаусон, хна, C 10 H 6 O 3
половина         
СТРАНИЦА ЗНАЧЕНИЙ
1/2; ½
ж.
1) ( одна из двух равных частей ) moitié
половина яблока - moitié d'une pomme
половина комнаты - moitié d'une pièce
прошла половина лета - la moitié de l'été à passé
2) ( середина ) moitié
половина третьего - deux heures et demie
во второй половине месяца - dans la seconde moitié du mois
добрая половина - une bonne moitié
дражайшая половина ( о жене ) шутл. - chère moitié
середка на половину, середина на половину - mi-figue, mi-raisin
4         
  • [[Гай Юлий Цезарь Випсаниан]]
ГОД I ВЕКА
4
quatre

تعريف

половина
ПОЛОВИНА, половинить, половник и пр. см. пола
.

ويكيبيديا

Ряд из натуральных чисел

Ряд из натуральных чисел — числовой ряд, члены которого являются последовательными натуральными числами: 1 + 2 + 3 + 4 + {\displaystyle 1+2+3+4+\ldots } ; при этом n-я частичная сумма ряда является треугольным числом:

k = 1 n k = n ( n + 1 ) 2 , {\displaystyle \sum _{k=1}^{n}k={\frac {n(n+1)}{2}},}

которое неограниченно растёт при стремлении n {\displaystyle n} к бесконечности. Из-за того, что последовательность частичных сумм ряда не имеет конечного предела, ряд расходится.

Несмотря на расходимость в традиционном смысле, некоторые обобщённые операции над натуральным рядом позволяют получить выводы, находящие применение в комплексном анализе, квантовой теории поля и теории струн.